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Abstract

Analytical exact solutions of a fundamental heat conduction problem in anisotropic multi-layered media are pre-

sented in this study. The steady-state temperature and heat flux fields in multi-layered media with anisotropic properties

in each layer subjected to prescribed temperature on the surfaces are analyzed in detail. Investigations on anisotropic

heat conduction problems are tedious due to the presence of many material constants and the complex form of the

governing partial differential equation. It is desirable to reduce the dependence on material constants in advance of the

analysis of a given boundary value problem. One of the objectives of this study is to develop an effective analytical

method to construct full-field solutions in anisotropic multi-layered media. A linear coordinate transformation is

introduced to simplify the problem. The linear coordinate transformation reduces the anisotropic multi-layered heat

conduction problem to an equivalent isotropic ones without complicating the geometry and boundary conditions of the

problem. By using the Fourier transform and the series expansion technique, explicit closed-form solutions of the

specific problems are presented in series forms. The numerical results of the temperature and heat flux distributions for

anisotropic multi-layered media are provided in full-field configurations.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many materials in which the thermal conductivity

varies with direction are called anisotropic materials. As

a result of interesting usage of anisotropic materials in

engineering applications, the development of heat con-

duction in anisotropic media has grown considerably in

recent years. To date, few reported results of tempera-

ture distribution or heat flux fields in anisotropic media

have appeared in the open literature. A number of

standard text books (Carslaw and Jaeger [1], Ozisik [2])

have devoted a considerable portion of their contents to

heat conduction problems in anisotropic bodies. Most of

the earlier works for heat conduction in anisotropic
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materials have been limited to one-dimensional prob-

lems in crystal physics [3,4]. Tauchert and Akoz [5]

solved the temperature fields of a two-dimensional

anisotropic slab using complex conjugate quantities.

Mulholland and Gupta [6] investigated a three-dimen-

sional anisotropic body of arbitrary shape by using

coordinate transformations to principal axes. Chang [7]

solved the heat conduction problem in a three-dimen-

sional configuration by conventional Fourier transfor-

mation. Poon [8] first surveyed the transformation of

heat conduction problems in layered composites from

anisotropic to orthotropic. Poon et al. [9] extended

coordinate transformation of the anisotropic heat con-

duction problem to isotropic one. Zhang [10] developed

a partition-matching technique to solve a two-dimen-

sional anisotropic strip with prescribed temperature on

the boundary.

In earlier papers, analytical solutions of anisotropic

heat conduction problems have been limited to simple or
ed.

mail to: ccma@ntu.edu.tw


Nomenclature

a half region of the prescribed temperature in

the top surface

b half region of the prescribed temperature in

the bottom surface

ðcj; djÞ undetermined coefficients

D the shifted distance for the position of the

concentrated temperature

f ðxÞ, gðxÞ arbitrary functions

F ðxÞ, GðxÞ Fourier transforms of f ðxÞ, gðxÞ
F a
k geometrical dependent function on the

thickness of the layer

G j=jþ1 relative matrix for the coefficients of the

adjacent layer

hj vertical distance of the interface for the jth
layer from the top surface

Hj vertical distance of the interface for the jth
layer from the top surface after the coordi-

nate transformation

Hn the thickness of the multi-layered medium

after transformation

k non-dimensional thermal conductivity

kij thermal conductivity

M1
k material dependent function on the refrac-

tion and reflection coefficients

ðqx; qyÞ heat flux

rj=jþ1 refraction coefficient

tj=jþ1 reflection coefficient

T temperature

ðx; yÞ coordinates

ðX ; Y Þ coordinates after transformation

Greek symbols

a, b coordinate transform coefficients

x Fourier transform parameter
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special cases [2]. In conventional studies of a multi-

dimensional anisotropic medium subjected to distrib-

uted temperature or heat flux in or on the media, the

analytical solution was obtained by Fourier transfor-

mation. It is unlikely to find in most cases the general

solutions with respect to each of the spatial variables to

satisfy partial differential equations of anisotropic heat

conduction equations and boundary conditions. The

work of Yan et al. [11] studied two-layered isotropic

bodies with homogeneous form of the conduction

equation and the Green function solution is used to

incorporate the effects of the internal heat source and

non-homogeneous boundary conditions. They obtained

the series solutions for three-dimensional temperature

distribution by Fourier transformation, Laplace trans-

formation and eigenvalue methods. Consequently, it is

more difficult to get general analytic solutions satisfying

all the boundary conditions for multi-layered aniso-

tropic heat conduction problem because of the conti-

nuity of temperature and heat flux on the interface and

the cross-derivatives in the governing equation. There-

fore, the cross term, which is the crux in solving the

anisotropic heat conduction problem, is very trouble-

some to analyze when one uses conventional solution

techniques to solve isotropic heat conduction problems.

Due to the mathematical difficulties of the problem, only

few solutions for heat conduction in anisotropic media

have appeared in the literature and much more work

remains to be done.

Exact solutions for heat conduction problems in

multi-layered media is of interest in electronic systems

and composite materials in a wide variety of modern
engineering applications. Consequently, the thermal

problems of heat dissipation from devices and systems

have become extremely important. The inherent aniso-

tropic nature of layered composites make the analysis

more involved than that of isotropic counterpart.

However, it may be pointed out that the exact and

complete solution for multi-layered bodies of even iso-

tropic media has not been reported to date because of

the mathematical difficulties. The mathematical diffi-

culties for heat conduction problem in multi-layered

media are caused by the complex form of the governing

partial differential equation and by the boundary and

continuity conditions associated with the problem.

Hsieh and Ma [12] used a linear coordinate transfor-

mation to solve the heat conduction problem for a

thin-layer medium with anisotropic properties. Exact

closed-form solutions of temperature and heat flux fields

were obtained by them.

In this study, a two-dimensional heat conduction

problem for anisotropic multi-layered media subjected

to prescribed temperature on the surfaces is investi-

gated. The number of the layer is arbitrary, the thermal

conductivities and the thickness are different in each

layer. One of the objectives of this study is to develop an

effective methodology to construct the analytical full-

field solution for this problem. Investigations on

anisotropic heat conduction problems are tedious due to

the presence of many material constants and the cross-

derivative term of the governing equation. It is desirable

to reduce the dependence on material constants in ad-

vance of the analysis of a given boundary value prob-

lem. A special linear coordinate transformation is
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introduced in this study to simplify the governing heat

conduction equation without complicating the conti-

nuity and boundary conditions of the problem. Based

on this transformation, the original anisotropic multi-

layered problem is converted to an equivalent isotropic

problem with a similar geometrical configuration. Ex-

plicit closed-form solutions for the temperature and heat

flux are expressed in a series form. Numerical results

of the full-field distribution for temperature and heat

flux are presented in graphic form and are discussed in

detail.
Fig. 1. Configuration and coordinates system of an anisotropic

multi-layered medium (a) and after the linear coordinate

transformation (b).
2. Basic formulation and linear coordinate transformation

Consider an anisotropic material that is homoge-

neous and has constant thermo-physical properties. The

governing partial differential equation for the heat con-

duction problem in a two-dimensional Cartesian coor-

dinate system is given by

k11
o2T
ox2

þ 2k12
o2T
oxoy

þ k22
o2T
oy2

¼ 0; ð1Þ

where k11, k12 and k22 are thermal conductivity coeffi-

cients, and T is the temperature field. The corresponding

heat fluxes are given as

qx ¼ �k11
oT
ox

� k12
oT
oy

;

qy ¼ �k12
oT
ox

� k22
oT
oy

:

ð2Þ

Based on irreversible thermo-dynamics, it can be

shown that k11k22 > k212 and the coefficients k11 and k22
are positive. The governing equation expressed in Eq. (1)

is a general homogeneous second order partial differ-

ential equation with constant coefficients. Such a linear

partial differential equation can be transformed into the

Laplace equation by a linear coordinate transformation.

A special linear coordinate transformation is introduced

as

X
Y

� �
¼ 1 a

0 b

� �
x
y

� �
; ð3Þ

where a ¼ � k12
k22
, b ¼ k

k22
and k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11k22 � k212

p
. After the

coordinate transformation, Eq. (1) can be rewritten as

the standard Laplace equation in the ðX ; Y Þ coordinate
system

k
o2T
oX 2

�
þ o2T
oY 2

�
¼ 0: ð4Þ

It is interesting to note that the mixed derivative is

eliminated from Eq. (1). The relationships between the

heat flux in the two coordinate systems are given by
qy ¼ �k oT
oY ¼ qY ;

qx ¼ ak oT
oY � bk oT

oX ¼ bqX � aqY ;
or

qY ¼ �k oT
oY ;

qX ¼ �k oT
oX :

ð5Þ

In a mathematical sense, Eqs. (1) and (2) are trans-

formed to Eqs. (4) and (5) by the linear coordinate

transformation expressed in Eq. (3), or in a physical

sense, the governing equation (1) and the heat flux and

temperature relation (2) of an anisotropic heat conduc-

tion problem are converted into an equivalent isotropic

problem by properly changing the geometry of the body

using the linear coordinate transformation, Eq. (3). The

coordinate transformation in Eq. (3) has the following

characteristics: (a) it is linear and continuous, (b) an

anisotropic problem is converted to an isotropic prob-

lem after the transformation, (c) there is no stretch and

rotation in the horizontal direction. These important

features offer advantages in dealing with straight

boundaries and interfaces in the multi-layered system

discussed in the present study.

The linear coordinate transformation described by

Eq. (3) can be used to solve the anisotropic heat con-

duction problem for only a single material. However, for

a multi-layered anisotropic medium with straight inter-

faces as shown in Fig. 1, a modification of the linear

coordinate transformation will be introduced in the

following section to transform the multi-layered aniso-

tropic problem to an equivalent multi-layered isotropic

problem.
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3. Full-field solutions for anisotropic multi-layered media

subjected to concentrated temperature

In this section, the full-field solutions for the heat

conduction problem of an anisotropic n-layered medium

subjected to a concentrated temperature T0 applied on

the top surface, as depicted in Fig. 1(a), will be analyzed.

The number of the layer is arbitrary, the thermal con-

ductivities and thickness in each layer are different. The

steady-state heat conduction equation in each layer is

expressed as

kðjÞ11

o2T ðjÞ

ox2
þ 2kðjÞ12

o2T ðjÞ

oxoy
þ kðjÞ22

o2T ðjÞ

oy2
¼ 0;

j ¼ 1; 2; . . . ; n: ð6Þ

The boundary conditions on the top and bottom

surfaces of the layered medium are

T ð1Þjy¼0 ¼ T0dðxÞ; T ðnÞjy¼hn
¼ 0; ð7Þ

where dð Þ is the delta function. The perfect thermal

contact condition is assumed for the adjacent layer. The

temperature and heat flux continuity conditions at the

interface between the jth and jþ 1th layer yield

T ðjÞjy¼hj
¼ T ðjþ1Þjy¼hj

;

qðjÞy jy¼hj
¼ qðjþ1Þ

y jy¼hj
;

j ¼ 1; 2; . . . ; n� 1: ð8Þ

In order to maintain the geometry of the layered

configuration, the linear coordinate transformation de-

scribed in Eq. (3) is modified for each layer as follows:

X

Y

� �
¼

1 aj
0 bj

" #
x

y

� �
þ
Xj�1

k¼1

hk
ak �akþ1

bk �bkþ1

� �
;

j ¼ 1; 2; . . . ; n; ð9Þ

where aj ¼ � kðjÞ
12

kðjÞ
22

, bj ¼
kj

kðjÞ
22

and kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðjÞ11 k

ðjÞ
22 � kðjÞ

2

12

q
.

Comparing with Eq. (3), the first term in the right-hand

side of Eq. (9) retains exactly the same form while the

second term with a summation becomes the modified

term. The new coordinate transformation possesses the

following characteristics: (a) no gaps or overlaps are

generated along the interface, (b) no sliding and mis-

matches occur along the interface. The geometric con-

figuration in the transformed ðX ; Y Þ coordinate is shown
in Fig. 1(b). Note that while the thickness of each layer is

changed, the interfaces are parallel to the x-axis. The
new geometric configuration after the coordinate trans-

formation is similar to the original problem.

The heat conduction equations in the transformed

coordinate for each layer are governed by the standard

Laplace equation

kj
o2T ðjÞ

oX 2

�
þ o2T ðjÞ

oY 2

�
¼ 0: ð10Þ
Furthermore, the temperature T and the heat flux qY
are still continuous along the interfaces in the trans-

formed coordinates,

T ðjÞjY¼Hj
¼ T ðjþ1ÞjY¼Hj

;

qðjÞY jY¼Hj
¼ qðjþ1Þ

Y jY¼Hj
;

j ¼ 1; 2; . . . ; n� 1; ð11Þ

where Hj ¼ bjhj þ
Pj�1

k¼1ðbk � bkþ1Þhk . The top and bot-

tom boundary conditions are expressed as

T ð1ÞjY¼0 ¼ T0dðX Þ; T ðnÞjY¼Hn
¼ 0: ð12Þ

The relations between heat flux field and temperature

field expressed in the ðX ; Y Þ coordinates within each

layer become

qðjÞX ðX ; Y Þ ¼ �kj
oT ðjÞðX ; Y Þ

oX
;

qðjÞY ðX ; Y Þ ¼ �kj
oT ðjÞðX ; Y Þ

oY ;

j ¼ 1; 2; . . . ; n� 1: ð13Þ

The boundary value problem described by Eqs. (10)–

(13) is similar to the multi-layered problem for an

isotropic material. Hence, the linear coordinate trans-

formation presented in Eq. (9) changes the original

complicated anisotropic multi-layered problem to the

corresponding isotropic multi-layered problem with a

similar geometric configuration and boundary condi-

tions.

The boundary value problem will be solved by the

Fourier transform technique. Take the Fourier trans-

form pairs defined as

eTT ðx; Y Þ ¼ Z 1

�1
T ðX ; Y Þe�ixX dX ;

T ðX ; Y Þ ¼ 1

2p

Z 1

�1
eTT ðx; Y ÞeixX dx; ð14Þ

where an overtilde denotes the transformed quantity, x
is the transform variable, and i ¼

ffiffiffiffiffiffiffi
�1

p
. By applying the

Fourier transformation to the governing partial differ-

ential equation (10), the equation in transformed do-

main will be an ordinary differential equation of order

two as follows:

d2eTT ðjÞðx; Y Þ
dY 2

� x2eTT ðjÞðx; Y Þ ¼ 0: ð15Þ

The general solutions of the temperature and heat

flux can be presented in the matrix form aseTT ðjÞ

~qqðjÞY

� �
¼ exY e�xY

�kjxexY kjxe�xY

� �
cj
dj

� �
: ð16Þ

Here cj and dj are undetermined coefficients for each

layer and can be obtained from the proper boundary

and continuity conditions. It is noted that the variable x
in the above equation is regarded as a parameter.

By using the continuity conditions at the interfaces,

the relation for the coefficients of the adjacent layer can

be expressed as
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cj
dj

� �
¼ 1

rj=jþ1

G j=jþ1
cjþ1

djþ1

� �
; j ¼ 1; 2; . . . ; n� 1; ð17Þ

where

rj=jþ1 ¼
2kj

kj þ kjþ1

;

G j=jþ1 ¼
1 tj=jþ1e

�2xHj

tj=jþ1e
2xHj 1

" #
; tj=jþ1 ¼

kj � kjþ1

kj þ kjþ1

:

Here rj=jþ1 and tj=jþ1 are called the refraction and the

reflection coefficients, respectively. Therefore, the rela-

tion between the coefficients of the jth layer and the nth
layer can be expressed as

cj
dj

� �
¼

Yn�1

k¼j

1

rk=kþ1

Gk=kþ1

� �" #
cn
dn

� �
; ð18Þ

where

Yn
k¼1

ak ¼ a1 � a2 . . . an:

By setting j ¼ 1 in Eq. (18) and applying the

boundary conditions as indicated in Eq. (12), the coef-

ficients cn and dn in the nth layer are obtained explicitly

as follows:

cn
dn

� �
¼ T0

A1 þ A2

�e�2xHn

1

� �
; ð19Þ

where A1 and A2 are expressed in a matrix form as

A1

A2

� �
¼

Yn�1

k¼1

1

rk=kþ1

Gk=kþ1

� �" #
�e�2xHn

1

� �
: ð20Þ

The undetermined constants cj and dj for each layer

are determined with the aid of the recurrence relations

given in Eqs. (18) and (19). After substituting the coef-

ficients cj and dj into Eq. (16), the full-field solutions for

each layer are completely determined in the transformed

domain. The solutions of temperature and heat flux in

the transformed domain for each layer are finally ex-

pressed as

eTT ðjÞ

~qqðjÞY

" #
¼ T0

A1 þ A2

exY e�xY

�kjxexY kjxe�xY

� �

�
Yn�1

k¼j

1

rk=kþ1

Gk=kþ1

� �" #
�e�2xHn

1

� �
: ð21Þ

Since the solutions in Fourier transformed domain

have been constructed, to inverse the solutions will be

the next step. Because of the denominators in Eq. (21), it

is impossible to inverse the Fourier transform directly.

By examining the structure of the denominator of Eq.
(21), both the numerator and denominator are multi-

plied by a constant S ¼
Qn�1

k¼1 rk=kþ1. Then it becomes,eTT ðjÞ

~qqðjÞY

" #
¼ ST0

SðA1 þ A2Þ
exY e�xY

�kjxexY kjxe�xY

� �

�
Yn�1

k¼j

1

rk=kþ1

Gk=kþ1

� �" #
�e�2xHn

1

� �
: ð22Þ

The denominator in Eq. (22), SðA1 þ A2Þ, can be

decomposed into the form of ð1� pÞ where

p ¼ 1� SðA1 þ A2Þ. It can be shown that p < 1 for

x > 0 . By a series expansion, we obtain 1
1�p ¼

P1
l¼0 p

l so

that Eq. (22) can be rewritten as

eTT ðjÞ

~qqðjÞY

" #
¼ ST0

exY e�xY

�kjxexY kjxe�xY

� �

�
Yn�1

k¼j

1

rk=kþ1

Gk=kþ1

� �" #
�e�2xHn

1

� �
�
X1
l¼0

pl:

ð23Þ

Since the solutions in the transformed domain ex-

pressed in Eq. (23) are mainly exponential functions of

x, the inverse Fourier transformation can be performed

term by term. By omitting the lengthy algebraic deri-

vation, the explicit solutions for temperature and heat

flux are obtained as follows:

T ðjÞðX ; Y Þ ¼ T0
X1
l¼0

XN
k¼1

M1
k

Y þ F a
k

X 2 þ ðY þ F a
k Þ

2

 

þ Y þ F b
k

X 2 þ ðY þ F b
k Þ

2

!
; ð24Þ

qðjÞY ðX ; Y Þ ¼ �T0kj
X1
l¼0

XN
k¼1

M1
k

X 2 � ðY þ F a
k Þ

2

X 2 þ ðY þ F a
k Þ

2
� �2

0B@

þ X 2 � ðY þ F b
k Þ

2

X 2 þ ðY þ F b
k Þ

2
� �2

1CA; ð25Þ

qðjÞX ðX ; Y Þ ¼ 2T0kj
X1
l¼0

XN
k¼1

M1
k

X ðY þ F a
k Þ

X 2 þ ðY þ F a
k Þ

2
� �2

0B@

þ X ðY þ F b
k Þ

X 2 þ ðY þ F b
k Þ

2
� �2

1CA; ð26Þ

where N ¼ ð2n�jÞð2n � 1Þl. Here n is the number of lay-

ers, and j is the jth layer where the solution is required.

The terms M1
k , F a

k and F b
k in Eq. (24)–(26) are defined

as:
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a1 ¼ 1; f A1

1 ¼ �2Hn; f
A2

1 ¼ 0;
aiþ2k�1 ¼ aitn�k=n�kþ1;

f A1

iþ2k�1 ¼ �ðf A1
i þ 2Hn þ 2Hn�kÞ;

f A2

iþ2k�1 ¼ �ðf A2
i þ 2Hn � 2Hn�kÞ;

8>>><>>>:
k ¼ 1; 2; . . . n� 1; i ¼ 1; 2; . . . 2k�1;

ð27aÞ

rpi ¼ �ai; rp
2n�1þi ¼ ai;

f p
i ¼ f A2

i ; f p
2n�1þi ¼ f A1

i ;

�
i ¼ 1; 2; . . . 2n�1;

ð27bÞ

rlk ¼
Ql
o¼1

rpio ;

glk ¼
Pl
o¼1

f p
io ;

8>><>>:
i1; i2; i3; . . . il ¼ 1; 2; 3; . . . 2n � 1;

k ¼
Xl�1

o¼1

ðio � 1Þð2n � 1Þl�o þ il;

ð27cÞ

for l ¼ 0, r0i0 ¼ 1 and g0i0 ¼ 0

M1

ði�1Þð2n�1Þlþk
¼ 1

2p

Qj�1

o¼1

ro=oþ1

� �P2n�j

i¼1

Pð2n�1Þl

k¼1

airlk ;

F a
ði�1Þð2n�1Þlþk

¼ glk þ f A1
i ;

F b
ði�1Þð2n�1Þlþk

¼ glk þ f A2
i ;

8>>>><>>>>:
k ¼ 1; 2; . . . ð2n � 1Þl; i ¼ 1; 2; . . . 2n�j:

ð27dÞ
Finally, by substituting X and Y defined in Eq. (9)

into Eqs. (24)–(26) and using Eq. (5), the explicit

expressions of temperature and heat flux fields for

anisotropic multi-layered media subjected to a pre-

scribed concentrated temperature T0 on the top surface

are presented as follows:

T ðjÞðx; yÞ ¼ T0
X1
l¼0

XN
k¼1

M1
k

Y þ F a
k

X 2 þ ðY þ F a
k Þ

2

 

þ Y þ F b
k

X 2 þ ðY þ F b
k Þ

2

!
; ð28Þ

qðjÞy ðx; yÞ ¼ �T0kj
X1
l¼0

XN
k¼1

M1
k

X 2 � ðY þ F a
k Þ

2

X 2 þ ðY þ F a
k Þ

2
� �2

0B@
þ X 2 � ðY þ F b

k Þ
2

X 2 þ ðY þ F b
k Þ

2
� �2

1CA; ð29Þ

qðjÞx ðx; yÞ

¼ T0kj
X1
l¼0

XN
k¼1

M1
k

X ½bjðY þ F a
k Þ � ajX � þ ðY þ F a

k Þ½bX � ajðY þ F a
k Þ�

X 2 þ ðY þ F a
k Þ

2
� �2

0B@
þ
X ½bjðY þ F b

k Þ � ajX � þ ðY þ F b
k Þ½bX � ajðY þ F b

k Þ�

X 2 þ ðY þ F b
k Þ

2
� �2

1CA; ð30Þ
X
Y

� �
¼ 1 aj

0 bj

� �
x
y

� �
þ
Xj�1

k¼1

hk
ak � akþ1

bk � bkþ1

� �
:

It is interesting to note that F a
k and F b

k are dependent

on the thickness of the layer, i.e., Hj, and M1
k depends

only on the refraction and reflection coefficients, i.e.,

rj=jþ1 and tj=jþ1.

If the concentrated temperature is applied on the

bottom surface of the anisotropic multi-layered medium,

the boundary conditions become

T ð1Þjy¼0 ¼ 0; T ðnÞjy¼hn ¼ T0dðxÞ: ð31Þ

By using the similar method indicated previously, the

solutions in the Fourier transformed domain are ob-

tained as follows:

eTT ðjÞ

~qqðjÞY

" #
¼ e�ixD�xHn

B1 þ B2e�2xHn

exY e�xY

�kjxexY kjxe�xY

� �

�
Yj�1

k¼1

1

rkþ1=k
Gn�kþ1=n�k

� �" #
1

�1

� �
; ð32Þ

where

B1

B2

" #
¼

Yn�1

k¼1

1

rkþ1=k
Gn�kþ1=n�k

� �" #
1

�1

" #
;

D ¼ anhn þ
Xn�1

k¼1

ðak � akþ1Þhk ;

Hn ¼ bnhn þ
Xn�1

k¼1

ðbk � bkþ1Þhk :

Note that D is a shifted amount in the horizontal

direction of the concentrated temperature and Hn is the

total thickness of the multi-layered medium after

applying the linear coordinate transformation as indi-

cated in Eq. (9).

By using the series expansion technique and the in-

verse Fourier transformation, the explicit solutions can

be expressed as follows:

T ðjÞðX ; Y Þ ¼ T0
X1
l¼0

XN
k¼1

M2
k

Y þ F c
k

ðX � DÞ2 þ ðY þ F c
k Þ

2

 

þ Y þ F d
k

ðX � DÞ2 þ ðY þ F d
k Þ

2

!
; ð33Þ

qðjÞY ðX ; Y Þ ¼ �T0kj
X1
l¼0

XN
k¼1

M2
k

ðX � DÞ2 � ðY þ F c
k Þ

2

ðX � DÞ2 þ ðY þ F c
k Þ

2
� �2

0B@

þ ðX � DÞ2 � ðY þ F d
k Þ

2

ðX � DÞ2 þ ðY þ F d
k Þ

2
� �2

1CA; ð34Þ
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qðjÞX ðX ; Y Þ ¼ 2T0kj
X1
l¼0

XN
k¼1

M2
k

ðX � DÞðY þ F c
k Þ

ðX � DÞ2 þ ðY þ F c
k Þ

2
� �2

0B@

þ ðX � DÞðY þ F d
k Þ

ðX � DÞ2 þ ðY þ F d
k Þ

2
� �2

1CA; ð35Þ

where

b1 ¼ 1f B
1 ¼ 0;

biþ2k�1 ¼ bitkþ1=k ;

f B
iþ2k�1 ¼ �ðf B

i þ 2HkÞ;

8><>:
k ¼ 1; 2; . . .m� 1; i ¼ 1; 2; . . . 2k�1;

ð36aÞ

rpi ¼ �bi; rp
2n�1þi ¼ bi;

f p
i ¼ f B

i ; f p
2n�1þi ¼ �f B

i � 2Hn;

�
i ¼ 1; 2; . . . 2n�1;

ð36bÞ

rlk ¼
Ql
o¼1

rpio ;

glk ¼
Pl
o¼1

f p
io ;

8>><>>:
i1; i2; i3; . . . il ¼ 1; 2; . . . 2n � 1;

k ¼
Xl�1

o¼1

ðio � 1Þð2n � 1Þl�o þ il;

ð36cÞ

for l ¼ 0, r0i0 ¼ 1 and g0i0 ¼ 0,

M2

ði�1Þð2n�1Þlþk
¼ 1

2p

Qn�1

o¼1

roþ1=o

� �P2j�1

i¼1

Pð2n�1Þl

k¼1

birlk ;

F c
ði�1Þð2n�1Þlþk

¼ glk þ f B
i � Hn;

F d
ði�1Þð2n�1Þlþk

¼ glk � f B
i � 3Hn;

8>>>><>>>>:
k ¼ 1; 2; . . . ð2n � 1Þl; i ¼ 1; 2; . . . 2j�1;

ð36dÞ

in which,

tjþ1=j ¼
kjþ1 � kj
kjþ1 þ kj

; rjþ1=j ¼
2kjþ1

kj þ kjþ1

:

4. Explicit solutions for distributed temperature on

surfaces

The full-field solutions of anisotropic multi-layered

media subjected to concentrated temperature on the

surfaces are obtained in the previous section. In this

section, the solutions of temperature and heat flux for

multi-layered media subjected to distributed tempera-

ture on the surfaces will be discussed.
The definition of convolution and the convolution

property of Fourier transform are as follows:

f ðxÞ � gðxÞ ¼
Z 1

�1
f ðsÞgðx� sÞds;

Iðf ðxÞ � gðxÞÞ ¼ eFF ðxÞeGGðxÞ:
ð37Þ

By using the convolution property of the Fourier

transform and the Green’s function in the transformed

domain, it is easy to construct solutions for distributed

temperature applied in the surfaces. Now consider the

case that the top surface on y ¼ 0, jxj < a is under the

action of a prescribed uniformly distributed tempera-

ture, that is, the boundary condition is replaced by

T ð1Þjy¼0 ¼ T0fHðxþ aÞ � Hðx� aÞg; ð38Þ

where HðÞ is the Heaviside function. The boundary

condition in the transformed domain is eTT ð1Þ ¼ 2T0 sin ax
x .

It is easy to write down the complete solution in

the Fourier transformed domain as follows:

eTT ðjÞ

~qqðjÞY

" #
¼ 2T0 sin ax

xðA1 þ A2Þ
exY e�xY

�kjxexY kjxe�xY

� �

�
Yn�1

k¼j

1

rk=kþ1

Gk=kþ1

� �" #
�e�2xHn

1

� �
: ð39Þ

The explicit solutions of temperature and heat flux

for multi-layered media subjected to a uniformly dis-

tributed temperature T0 in the region 2a on the top

surface are expressed as follows:

T ðjÞðX ;Y Þ ¼ T0
X1
l¼0

XN
k¼1

M1
k tan�1 X þ a

Y þ F a
k

�
� tan�1 X � a

Y þ F a
k

þ tan�1 X þ a
Y þ F b

k

� tan�1 X � a
Y þ F b

k

�
; ð40Þ

qðjÞY ðX ; Y Þ ¼ T0kj
X1
l¼0

XN
k¼1

M1
k

�

X þ a

ðX þ aÞ2 þ ðY þ F a
k Þ

2
� X � a

ðX � aÞ2 þ ðY þ F a
k Þ

2

þ X þ a

ðX þ aÞ2 þ ðY þ F b
k Þ

2
� X � a

ðX � aÞ2 þ ðY þ F b
k Þ

2

0BBBB@
1CCCCA;

ð41Þ

qðjÞX ðX ; Y Þ ¼ T0kj
X1
l¼0

XN
k¼1

M1
k

�

Y þ F a
k

ðX þ aÞ2 þ ðY þ F a
k Þ

2
� Y þ F a

k

ðX � aÞ2 þ ðY þ F a
k Þ

2

þ Y þ F b
k

ðX þ aÞ2 þ ðY þ F b
k Þ

2
� Y þ F b

k

ðX � aÞ2 þ ðY þ F b
k Þ

2

0BBB@
1CCCA;

ð42Þ

where M1
k , F

a
k and F b

k are given in Eqs. (27a)–(27d).



Table 1

The thermal conductivities for the anisotropic ten-layered

medium

Layer Thermal conductivity (W/mK)

k11 k12 k22

1 44.01 11.91 85.28

2 76.56 20.63 52.73

3 30.65 3.37 28.82

4 83.61 18.12 20.84

5 33.67 0 33.67

6 52.73 20.63 76.56

7 28.82 3.37 30.65

8 83.61 18.12 20.84

9 33.67 0 33.67

10 85.28 11.91 44.01

1650 C.-C. Ma, S.-W. Chang / International Journal of Heat and Mass Transfer 47 (2004) 1643–1655
Similarly, the solutions of anisotropic multi-layered

media subjected to a uniformly distributed temperature

T0 in the region jxj6 b on the bottom surface are ob-

tained as follows:

T ðjÞðX ;Y Þ ¼ T0
X1
l¼0

XN
k¼1

M2
k

�
tan�1

X �Dþ b
Y þ F c

k

� tan�1 X �D� b
Y þ F c

k

þ tan�1
X �Dþ b
Y þ F d

k

� tan�1 X �D� b
Y þ F d

k

0BBB@
1CCCA;

ð43Þ

qðjÞY ðX ;Y Þ

¼ T0kj
X1
l¼0

XN
k¼1

M2
k

�

X �Dþ b

ðX �Dþ bÞ2 þ ðY þ F c
k Þ

2
� X �D� b

ðX �D� bÞ2 þ ðY þ F c
k Þ

2

þ X �Dþ b

ðX �Dþ bÞ2 þ ðY þ F d
k Þ

2
� X �D� b

ðX �D� bÞ2 þ ðY þ F d
k Þ

2

0BBB@
1CCCA;

ð44Þ

qðjÞX ðX ;Y Þ

¼ T0kj
X1
l¼0

XN
k¼1

M2
k

�

Y þF c
k

ðX �DþbÞ2þðY þF c
k Þ

2
� Y þF c

k

ðX �D�bÞ2þðY þF c
k Þ

2

þ Y þF d
k

ðX �DþbÞ2þðY þF d
k Þ

2
� Y þF d

k

ðX �D�bÞ2þðY þF d
k Þ

2

0BBB@
1CCCA;

ð45Þ

where M2
k , F

c
k and F d

k are given in Eqs. (36a)–(36d).
Fig. 2. Full-field temperature distribution for prescribed uniform
5. Numerical results

By using the analytical explicit solutions developed in

the previous sections, numerical calculations of tem-

perature and heat flux are obtained for anisotropic

multi-layered media via a computational program. The

full-field analysis for the anisotropic layered medium

consisting of 10 layers subjected to prescribed tempera-

ture on surfaces will be discussed in detail. The thermal

conductivities for each layer are listed in Table 1.

Figs. 2–4 show the full-field distributions of temper-

ature and heat fluxes for prescribed uniformly distrib-

uted temperature T0 on the top surface �h6 x6 h, the
thickness for each layer is the same and equal to h. In the

full-field distribution contours, solid lines and dot lines

are used to indicate positive and negative values,

respectively. In anisotropic multi-layered media, the
ly distributed temperature T0 on the top surface �h6 x6 h.



Fig. 4. Full-field heat flux qx distribution for prescribed uniformly distributed temperature T0 on the top surface �h6 x6 h.

Fig. 3. Full-field heat flux qy distribution for prescribed uniformly distributed temperature T0 on the top surface �h6 x6 h.
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symmetry for the temperature and heat flux fields that is

found in the isotropic material is distorted due to

the material anisotropy. It is shown in the figures that

the temperature and heat flux qy are continuous at the

interfaces. This also indicates that the convergence and

accuracy for the numerical calculation are satisfied.

However, the heat flux qx is discontinuous at the inter-

faces and the values are small except at the first layer.

Next, the full-field analysis of anisotropic multi-lay-

ered media with different layer thickness for each layer is

considered. The full-field distributions of temperature

and heat flux in the y-direction for prescribed uniformly

distributed temperature 2T0 at two regions ð�2h6 x6
�h; h6 x6 2hÞ on the top surface and constant tem-

perature T0 on the entire bottom surface are shown in

Figs. 5 and 6, respectively. Fig. 7 shows the temperature

field for prescribed constant temperature 2T0 at

�h6 x6 h on the top surface and constant temperature

T0 at �2h6 x6 2h on the bottom surface.

The use of composite materials in a wide variety of

modern engineering applications has been rapidly

increasing over the past few decades. The increasing use

of composite materials in the automotive and aerospace

industries has motivated research into solution methods

to investigate the thermal properties of these materials.

Numerical calculations for layered composites of 12



Fig. 5. Full-field temperature distribution for prescribed uniformly distributed temperature 2T0 at two regions ð�2h6 x6 � h;
h6 x6 2hÞ on the top surface and constant temperature T0 on the bottom surface.

Fig. 6. Full-field heat flux qy distribution for prescribed uniformly distributed temperature 2T0 at two regions ð�2h6 x6 � h;
h6 x6 2hÞ on the top surface and constant temperature T0 on the bottom surface.
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fiber-reinforced layers will be considered. The fiber angle,

h, is measured counterclockwise from the positive x-axis
to the fiber direction. A [0�/30�/60�/90�/120�/150�]2 lam-

inated composite is considered first. By regarding each

layer as being homogeneous and anistotropic, the gross

thermal conductivities k11, k12, k22 ¼ 30:65, 3.37, 28.82
W/mK in the material coordinates of the layer are used.

The gross thermal conductivities in the structured coor-

dinates for a given fiber orientation h of the layer can be

determined via the tensor transformation equation. The

numerical result of the temperature distribution for pre-

scribed temperature 2T0 in a region �2h6 x6 2h on the



Fig. 7. Full-field temperature distribution for prescribed uniformly distributed temperature 2T0 at �h6 x6 h on the top surface and

constant temperature T0 at �2h6 x6 2h on the bottom surface.

Fig. 8. Full-field temperature distribution of a [30�/60�/90�/120�/150�]2 laminated composite for prescribed uniformly distributed

temperature 2T0 at �2h6 x6 2h on the top surface.
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top surface is shown in Fig. 8. Next, a composite layered

medium with stacking sequence [0�/60�/)60�]2S is inves-

tigated and the result is shown in Fig. 9.

Finally, we consider the prescribed surface tempera-

ture as a function in the form
T ð1Þjy¼0 ¼
T0 1þ cos p

h x
	 


jxj6 h
0 jxj > h:

�
ð46Þ

Figs. 10 and 11 indicate the full-field distributions of

temperature and heat flux in the y-direction for an



Fig. 9. Full-field temperature distribution of a [0�/60�/)60�]2S laminated composite for prescribed uniformly distributed temperature

2T0 at �2h6 x6 2h on the top surface.

Fig. 10. Full-field temperature distribution for prescribed distributed temperature T0ð1þ cos p
h xÞ at �h6 x6 h on the top surface.
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anisotropic layered medium consisting of 10 layers. The

thickness for each layer is different and the thermal

conductivities are presented in Table 1.
6. Summary and conclusions

A two-dimensional steady-state thermal conduction

problem of anisotropic multi-layered media is consi-
dered in this study. A linear coordinate transformation

for multi-layered media is introduced to simplify the

governing heat conduction equation without compli-

cating the boundary and interface conditions. The linear

coordinate transformation introduced in this study

substantially reduces the dependence of the solution on

thermal conductivities and the original anisotropic

multi-layered heat conduction problem is reduced to

an equivalent isotropic problem. By using the Fourier



Fig. 11. Full-field heat flux qy distribution for prescribed distributed temperature T0ð1þ cos p
h xÞ at �h6 x6 h on the top surface.
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transform technique and a series expansion, exact ana-

lytical solutions for the full-field distribution of tem-

perature and heat flux are presented in explicit series

forms. The solutions are easy to handle in numerical

computation. The numerical results for the full-field

distribution for different boundary conditions are pre-

sented and are discussed in detail. Solutions for other

cases of boundary temperature distribution can be

constructed from the basic solution obtained in this

study by superposition. The analytical method provided

in this study can also be extended to solve the aniso-

tropic heat conduction problem in multi-layered media

with embedded heat sources and the results will be given

in a follow-up paper.
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