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Abstract

Analytical exact solutions of a fundamental heat conduction problem in anisotropic multi-layered media are pre-
sented in this study. The steady-state temperature and heat flux fields in multi-layered media with anisotropic properties
in each layer subjected to prescribed temperature on the surfaces are analyzed in detail. Investigations on anisotropic
heat conduction problems are tedious due to the presence of many material constants and the complex form of the
governing partial differential equation. It is desirable to reduce the dependence on material constants in advance of the
analysis of a given boundary value problem. One of the objectives of this study is to develop an effective analytical
method to construct full-field solutions in anisotropic multi-layered media. A linear coordinate transformation is
introduced to simplify the problem. The linear coordinate transformation reduces the anisotropic multi-layered heat
conduction problem to an equivalent isotropic ones without complicating the geometry and boundary conditions of the
problem. By using the Fourier transform and the series expansion technique, explicit closed-form solutions of the
specific problems are presented in series forms. The numerical results of the temperature and heat flux distributions for

anisotropic multi-layered media are provided in full-field configurations.

© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many materials in which the thermal conductivity
varies with direction are called anisotropic materials. As
a result of interesting usage of anisotropic materials in
engineering applications, the development of heat con-
duction in anisotropic media has grown considerably in
recent years. To date, few reported results of tempera-
ture distribution or heat flux fields in anisotropic media
have appeared in the open literature. A number of
standard text books (Carslaw and Jaeger [1], Ozisik [2])
have devoted a considerable portion of their contents to
heat conduction problems in anisotropic bodies. Most of
the earlier works for heat conduction in anisotropic
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materials have been limited to one-dimensional prob-
lems in crystal physics [3,4]. Tauchert and Akoz [5]
solved the temperature fields of a two-dimensional
anisotropic slab using complex conjugate quantities.
Mulholland and Gupta [6] investigated a three-dimen-
sional anisotropic body of arbitrary shape by using
coordinate transformations to principal axes. Chang [7]
solved the heat conduction problem in a three-dimen-
sional configuration by conventional Fourier transfor-
mation. Poon [8] first surveyed the transformation of
heat conduction problems in layered composites from
anisotropic to orthotropic. Poon et al. [9] extended
coordinate transformation of the anisotropic heat con-
duction problem to isotropic one. Zhang [10] developed
a partition-matching technique to solve a two-dimen-
sional anisotropic strip with prescribed temperature on
the boundary.

In earlier papers, analytical solutions of anisotropic
heat conduction problems have been limited to simple or
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Nomenclature

a half region of the prescribed temperature in
the top surface

b half region of the prescribed temperature in

the bottom surface

(¢j,d;)  undetermined coefficients
the shifted distance for the position of the
concentrated temperature

f(x), g(x) arbitrary functions

F(w), G(w) Fourier transforms of f(x), g(x)

F geometrical dependent function on the
thickness of the layer

Gy relative matrix for the coefficients of the
adjacent layer

h; vertical distance of the interface for the jth
layer from the top surface
H; vertical distance of the interface for the jth

layer from the top surface after the coordi-
nate transformation

H, the thickness of the multi-layered medium
after transformation

k non-dimensional thermal conductivity

ki thermal conductivity

M, material dependent function on the refrac-

tion and reflection coefficients
(q.w qy) heat flux

Vj/j+1 refraction coefficient
Ljjjr1 reflection coefficient
T temperature

(x,y)  coordinates
(X,Y) coordinates after transformation

Greek symbols
o f coordinate transform coefficients
) Fourier transform parameter

special cases [2]. In conventional studies of a multi-
dimensional anisotropic medium subjected to distrib-
uted temperature or heat flux in or on the media, the
analytical solution was obtained by Fourier transfor-
mation. It is unlikely to find in most cases the general
solutions with respect to each of the spatial variables to
satisfy partial differential equations of anisotropic heat
conduction equations and boundary conditions. The
work of Yan et al. [11] studied two-layered isotropic
bodies with homogeneous form of the conduction
equation and the Green function solution is used to
incorporate the effects of the internal heat source and
non-homogeneous boundary conditions. They obtained
the series solutions for three-dimensional temperature
distribution by Fourier transformation, Laplace trans-
formation and eigenvalue methods. Consequently, it is
more difficult to get general analytic solutions satisfying
all the boundary conditions for multi-layered aniso-
tropic heat conduction problem because of the conti-
nuity of temperature and heat flux on the interface and
the cross-derivatives in the governing equation. There-
fore, the cross term, which is the crux in solving the
anisotropic heat conduction problem, is very trouble-
some to analyze when one uses conventional solution
techniques to solve isotropic heat conduction problems.
Due to the mathematical difficulties of the problem, only
few solutions for heat conduction in anisotropic media
have appeared in the literature and much more work
remains to be done.

Exact solutions for heat conduction problems in
multi-layered media is of interest in electronic systems
and composite materials in a wide variety of modern

engineering applications. Consequently, the thermal
problems of heat dissipation from devices and systems
have become extremely important. The inherent aniso-
tropic nature of layered composites make the analysis
more involved than that of isotropic counterpart.
However, it may be pointed out that the exact and
complete solution for multi-layered bodies of even iso-
tropic media has not been reported to date because of
the mathematical difficulties. The mathematical diffi-
culties for heat conduction problem in multi-layered
media are caused by the complex form of the governing
partial differential equation and by the boundary and
continuity conditions associated with the problem.
Hsieh and Ma [12] used a linear coordinate transfor-
mation to solve the heat conduction problem for a
thin-layer medium with anisotropic properties. Exact
closed-form solutions of temperature and heat flux fields
were obtained by them.

In this study, a two-dimensional heat conduction
problem for anisotropic multi-layered media subjected
to prescribed temperature on the surfaces is investi-
gated. The number of the layer is arbitrary, the thermal
conductivities and the thickness are different in each
layer. One of the objectives of this study is to develop an
effective methodology to construct the analytical full-
field solution for this problem. Investigations on
anisotropic heat conduction problems are tedious due to
the presence of many material constants and the cross-
derivative term of the governing equation. It is desirable
to reduce the dependence on material constants in ad-
vance of the analysis of a given boundary value prob-
lem. A special linear coordinate transformation is
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introduced in this study to simplify the governing heat
conduction equation without complicating the conti-
nuity and boundary conditions of the problem. Based
on this transformation, the original anisotropic multi-
layered problem is converted to an equivalent isotropic
problem with a similar geometrical configuration. Ex-
plicit closed-form solutions for the temperature and heat
flux are expressed in a series form. Numerical results
of the full-field distribution for temperature and heat
flux are presented in graphic form and are discussed in
detail.

2. Basic formulation and linear coordinate transformation

Consider an anisotropic material that is homoge-
neous and has constant thermo-physical properties. The
governing partial differential equation for the heat con-
duction problem in a two-dimensional Cartesian coor-
dinate system is given by

T T ’T

62+2k126 oy +hkn—— o2 =0, (1)

ki
where kiy, k1, and ky, are thermal conductivity coeffi-
cients, and T is the temperature field. The corresponding
heat fluxes are given as

or or

qx —kn — ki —,
0 dy 2)

X or s or

qy 12 3 22 6)/

Based on irreversible thermo-dynamics, it can be
shown that ki 1ky, > k2, and the coefficients k;; and kx»
are positive. The governing equation expressed in Eq. (1)
is a general homogeneous second order partial differ-
ential equation with constant coefficients. Such a linear
partial differential equation can be transformed into the
Laplace equation by a linear coordinate transformation.
A special linear coordinate transformation is introduced
as

X 1 afl|x

3]=1 F0) ®
where o = :”, B =2 and k = \/ki ky — k2,. After the
coordinate transformatlon Eq. (1) can be rewritten as

the standard Laplace equation in the (X, Y) coordinate
system

T ’T
k({ =—=+=— | =0. 4
<aX2 + ayz) @
It is interesting to note that the mixed derivative is

eliminated from Eq. (1). The relationships between the
heat flux in the two coordinate systems are given by

Y
<1

qy=*ka—r—qy, qr = —

k
or
gy = 0k & — Pk &L = gy — gy, qx = —k

)

282

(5)

In a mathematical sense, Eqs. (1) and (2) are trans-
formed to Eqgs. (4) and (5) by the linear coordinate
transformation expressed in Eq. (3), or in a physical
sense, the governing equation (1) and the heat flux and
temperature relation (2) of an anisotropic heat conduc-
tion problem are converted into an equivalent isotropic
problem by properly changing the geometry of the body
using the linear coordinate transformation, Eq. (3). The
coordinate transformation in Eq. (3) has the following
characteristics: (a) it is linear and continuous, (b) an
anisotropic problem is converted to an isotropic prob-
lem after the transformation, (c) there is no stretch and
rotation in the horizontal direction. These important
features offer advantages in dealing with straight
boundaries and interfaces in the multi-layered system
discussed in the present study.

The linear coordinate transformation described by
Eq. (3) can be used to solve the anisotropic heat con-
duction problem for only a single material. However, for
a multi-layered anisotropic medium with straight inter-
faces as shown in Fig. 1, a modification of the linear
coordinate transformation will be introduced in the
following section to transform the multi-layered aniso-
tropic problem to an equivalent multi-layered isotropic
problem.

(@ T,
h; X
y 2
hy, n
(b) T,
|, I
Y X
H, J
H, n

Fig. 1. Configuration and coordinates system of an anisotropic
multi-layered medium (a) and after the linear coordinate
transformation (b).
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3. Full-field solutions for anisotropic multi-layered media
subjected to concentrated temperature

In this section, the full-field solutions for the heat
conduction problem of an anisotropic n-layered medium
subjected to a concentrated temperature 7, applied on
the top surface, as depicted in Fig. 1(a), will be analyzed.
The number of the layer is arbitrary, the thermal con-
ductivities and thickness in each layer are different. The
steady-state heat conduction equation in each layer is
expressed as

orrv) 0T N O2T0)
kil g 2 g e = 0,
j=12....n. (6)

The boundary conditions on the top and bottom
surfaces of the layered medium are

T(l)‘y:() = Toé(x)v T |y:h,, =0, (7)

where 6() is the delta function. The perfect thermal
contact condition is assumed for the adjacent layer. The
temperature and heat flux continuity conditions at the
interface between the jth and j 4 1th layer yield

TV ‘y:h = TU+|

h7 .
o) (/+I)|} j=12...,n—1. (8)

y=h;’

,:/

In order to maintain the geometry of the layered
configuration, the linear coordinate transformation de-
scribed in Eq. (3) is modified for each layer as follows:

M (NE g

j:1727"'7n7 (9)

x4 * 7 1.0) (.)2
_‘;Tj)’ [)’j:@ and &k =1\/kkh — k) .

Comparing with Eq. (3), the first term in the right-hand
side of Eq. (9) retains exactly the same form while the
second term with a summation becomes the modified
term. The new coordinate transformation possesses the
following characteristics: (a) no gaps or overlaps are
generated along the interface, (b) no sliding and mis-
matches occur along the interface. The geometric con-
figuration in the transformed (X, Y) coordinate is shown
in Fig. 1(b). Note that while the thickness of each layer is
changed, the interfaces are parallel to the x-axis. The
new geometric configuration after the coordinate trans-
formation is similar to the original problem.

The heat conduction equations in the transformed
coordinate for each layer are governed by the standard
Laplace equation

27()) 270)
k,(aiﬁi) =0. (10)

where o, =

0X? oy?

Furthermore, the temperature T and the heat flux ¢y
are still continuous along the interfaces in the trans-
formed coordinates,

TU)'Y: =Tt ‘Y:Hﬂ .

j (j+1) J= 17 27 ce
qy |Y:H] =4y |Y:H]7
where H; = f;h; + Zj;ll (Bx — Bii1)hi. The top and bot-
tom boundary conditions are expressed as

TV, o =TdX), T}, =0. (12)

n—1, (11)

The relations between heat flux field and temperature
field expressed in the (X,Y) coordinates within each
layer become

. ATV (X,Y)

q()?)(XJ):—k/T,
=12 n—1. (13)

40X, 7) = w

The boundary value problem described by Egs. (10)—
(13) is similar to the multi-layered problem for an
isotropic material. Hence, the linear coordinate trans-
formation presented in Eq. (9) changes the original
complicated anisotropic multi-layered problem to the
corresponding isotropic multi-layered problem with a
similar geometric configuration and boundary condi-
tions.

The boundary value problem will be solved by the
Fourier transform technique. Take the Fourier trans-
form pairs defined as

T(w,Y) = /DC T(X,Y)e X dx,
- (14)

00

T(X,Y) = % /_ . T(w,Y)e do,

where an overtilde denotes the transformed quantity, w
is the transform variable, and i = v/—1. By applying the
Fourier transformation to the governing partial differ-
ential equation (10), the equation in transformed do-
main will be an ordinary differential equation of order
two as follows:

79w, Y)

a7 — T (w,Y) =0. (15)

The general solutions of the temperature and heat
flux can be presented in the matrix form as

%(1) B e®Y e~ Y ¢
[ é%/]) ] - |:7kjwemy kjwe—my dj . (16)

Here c; and d; are undetermined coefficients for each
layer and can be obtained from the proper boundary
and continuity conditions. It is noted that the variable w
in the above equation is regarded as a parameter.

By using the continuity conditions at the interfaces,
the relation for the coefficients of the adjacent layer can
be expressed as
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Cj 1 Cjt1 .

Gy | T, =12, 01 17
[dj] i i/i+1 l:df+1:| J ) &y ) ( )
where

2%;
Fiigl = ————,
Jlit kj +kj+1
Gijy = 1 tyjpere 20 = K — ki1
i/ tj/j+1eszJ 1 ’ it k/ + kj+1 ’

Here rj/;11 and ¢;/;,, are called the refraction and the
reflection coefficients, respectively. Therefore, the rela-
tion between the coefficients of the jth layer and the nth
layer can be expressed as

[fé] - [H (f Gk/kﬂ)} M (18)

where

n
Hak =d;-ay...a,.
k=1

By setting j=1 in Eq. (18) and applying the
boundary conditions as indicated in Eq. (12), the coef-
ficients ¢, and d, in the nth layer are obtained explicitly
as follows:

| TO _e—Z(uH,,
[dn] _A1+A2[ 1 } (19)

where 4, and 4, are expressed in a matrix form as

AR (Ot |

The undetermined constants ¢; and d; for each layer
are determined with the aid of the recurrence relations
given in Eqgs. (18) and (19). After substituting the coef-
ficients c; and d, into Eq. (16), the full-field solutions for
each layer are completely determined in the transformed
domain. The solutions of temperature and heat flux in
the transformed domain for each layer are finally ex-
pressed as

?(}) T e e~ Y
é%;/) N Al + AZ |: —ijery kjwe’”’y :l

n—1 76*2“1[1”
X G . 21
g (rk/k+1 k/k+l> { 1 ] @b

Since the solutions in Fourier transformed domain
have been constructed, to inverse the solutions will be
the next step. Because of the denominators in Eq. (21), it
is impossible to inverse the Fourier transform directly.
By examining the structure of the denominator of Eq.

(21), both the numerator and denominator are multi-
plied by a constant S = HZ;{ i/e+1- Then it becomes,

']"w(/) - STb |: @Y e oY :|
g | S+ 4;) [ —kwe””  koe !

n—1 1 _e—ZwH,,
X G . 22
I[ (Vk/m k/kﬂ) [ 1 } @)

The denominator in Eq. (22), S(4, +42), can be
decomposed into the form of (1 —p) where

p=1-—S(4, +4,). It can be shown that p <1 for

o > 0. By a series expansion, we obtain & =
that Eq. (22) can be rewritten as

V@ }
3y

Zio p'so

eo)Y efqu
0 —
_kjweo)Y k,iwe wY

TG e[ e

Ti/k+1 =0

(23)

Since the solutions in the transformed domain ex-
pressed in Eq. (23) are mainly exponential functions of
o, the inverse Fourier transformation can be performed
term by term. By omitting the lengthy algebraic deri-
vation, the explicit solutions for temperature and heat
flux are obtained as follows:

o0 N
Y+ F¢
=T
53 (e
Y +F?
", (24)
X2+ (Y +F)

— (Y + F2)
(X + (Y +FY) )

qy ( Y) = —Tok; ZEMI

)

X - (Y +F)

+ | (25)
(e + R
0o N Y+FZI)
NUPSSRPYT) g piv] et
=0 %=1 (XZ (Y+F,f)2>
X(Y+E) (26)

(4 (e )

where N = (2")(2" — 1)'. Here n is the number of lay-
ers, and j is the jth layer where the solution is required.
The terms M| , F# and F} in Eq. (24)—(26) are defined
as:
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ay = 17f‘1Al = _2Hn’flA2 = 03

Ajok-1 = = a;t,_ k/n—k+15
Sy == (" +2H, + 2H, ), (27a)
[l = —(f{* +2H, — 2H, ),
k=1,2,...n—1, i=12,...2"
{'{:_ah rgn l+i:ai7
7= [ ;nl+, s (27b)
i=1,2,...2""
rk: li[l ip?
I
&=,
o=1 (27¢)

i1,0,03,...0, =1,2,3,...2" — 1,

k=Y (i, — Q2" = 1) +i,

for /=0,7) =1andg) =0

. on ,(2/1 1)/
M 1y l (Hr0/0+1>; Z ark7
FE‘:—I)(Z” ]) gk +ﬁ

b
F( _1)r—1y! gk+f;
k:l,z,...(z 1, i=12,...2".

(274d)

Finally, by substituting X and Y defined in Eq. (9)

into Egs. (24)-(26) and using Eq. (5), the explicit

expressions of temperature and heat flux fields for

anisotropic multi-layered media subjected to a pre-

scribed concentrated temperature 7, on the top surface
are presented as follows:

Y+ E
OZZI ( (Y Y

Y +FP
+% , (28)
X2+ (Y +F)

— (Y +F)
(XZ + (Y +FY) )2

00 N
qy) - _Tokfz Z

1=0 k=1

X2 (Y+F)

| (29)
(2 + (v + B2y

+

4 (x,)
— 7k > iM; IR +F) =2 X] 4 (7 + ROBX — (Y + F))
1=0 k=1 (Xer(YJrFa)Z)
+X[ﬂ,<y+ﬁ{v>w/.x]+(y+ng>[ﬁzxﬂ,<y+F;>] 7 (30)
(e +r+ B

X 1 O(/':| [X:| = |:O(k—0(k+1:|
= +> h .
[Y] [0 By ;k Be = Bi

It is interesting to note that F¢ and F are dependent
on the thickness of the layer, i.e., H;, and M} depends
only on the refraction and reflection coefficients, i.e.,
rijpe1 and .

If the concentrated temperature is applied on the
bottom surface of the anisotropic multi-layered medium,
the boundary conditions become
TV, =0, ™|, = Tyd(x). (31)

By using the similar method indicated previously, the
solutions in the Fourier transformed domain are ob-
tained as follows:

’Tv‘(/’) efiwD—wH,, e®Y e~V
qg) - Bl + Bze—Zan 7kjwewY kjwe—mY

: [:1_[11 (rkjl/k Gnk“/"k)] {—]1 } (2

where
Bl n—1 < 1 ) 1
= an n— ’
Bz /1:[1 Ferik k+1/n—k 1

n—1
D= (xnhn + Z(ak - ak+1)hk7
k=1

n—1

H, = B,h, +Z = Bk

Note that D is a shifted amount in the horizontal
direction of the concentrated temperature and H, is the
total thickness of the multi-layered medium after
applying the linear coordinate transformation as indi-
cated in Eq. (9).

By using the series expansion technique and the in-
verse Fourier transformation, the explicit solutions can
be expressed as follows:

< N Y+ F¢
Y)=T M? k
) ZZ k((X—D)2+(Y+F;f)2
Y F(I
+ 2+ k >, (33)
(X =Dy + (Y +F)

(X — D)
(& =07 + (4 F?)

- (Y+F)

a7 (X, Y) = ~Tok; Z ZMZ

T i Vi I

(v =Dy + (v +£))
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<(X*D)2+(Y+F;)2)

X —D)(Y + F)

: ~| 69
(& =Dy +(r+£?)
where
b =1/ =0,
bijoi1 = bitirijxs
FE o =—(ff +2Hj), (36a)
k=12,..m—1, i=1.2,...2¢1
{rf’: —b;, r;’,,l l:b
fF=rE fo,=—fF-2H, (36b)
i=1,2,...2"",
I
rA - [[l [7%)
!
& =2,
. (36¢)
l17i27i37 i171727 .2"—1,
-1
k=3 6D ="+,
o=1
for /=0,r) =1and g) =0,
, 2-1(-1y!
M )@ -k (H"wl/o); Z brt,
c — B
Fe iy gk +/7 -
d B
(i-D2-1)! T f,
k:Ll“(?7UCi:LLHQH’
(36d)
in which,
Lit =M Pt .:&
j+1/j kj+1 + kja Jj+1/j kj i kj+1 .

4. Explicit solutions for distributed temperature on
surfaces

The full-field solutions of anisotropic multi-layered
media subjected to concentrated temperature on the
surfaces are obtained in the previous section. In this
section, the solutions of temperature and heat flux for
multi-layered media subjected to distributed tempera-
ture on the surfaces will be discussed.

The definition of convolution and the convolution
property of Fourier transform are as follows:

- / " f@glx— 1) d,
. (37)
3(() * () = F(@)G(o).

By using the convolution property of the Fourier
transform and the Green’s function in the transformed
domain, it is easy to construct solutions for distributed
temperature applied in the surfaces. Now consider the
case that the top surface on y =0, |x| < a is under the
action of a prescribed uniformly distributed tempera-
ture, that is, the boundary condition is replaced by

T(')|y:0:TO{H(x—I—a)—H(x—a)}, (38)

where H() is the Heaviside function. The boundary
condition in the transformed domain is 7() = w
It is easy to write down the complete solution in
the Fourier transformed domain as follows:

7w _ 2Tsinaw et e Y
7y o4, +45) | —kjwe”’  kjowe Y

n—1 1 —e20H,
X G . 39
g (Vk//m k/k“) [ 1 } )

The explicit solutions of temperature and heat flux
for multi-layered media subjected to a uniformly dis-
tributed temperature 7, in the region 2a on the top
surface are expressed as follows:

X t
an
Y + B Y + F

X —
ab —tan™! ab , (40)
Y+ R Y +F

00 N
(X, Y) =Tk, Y > M|
1=0 k=1
X+a X —a
X +a)P+ (Y +F)Y? (X —a)+ (Y +F)
>< 9
X+a B X —a
X+a’+(Y+F) (X—a+ (Y +F)
(41)
00 N
=Tk Y > M
1=0 k=1
Y+ F Y+ E
X +a) + (Y +F)? (X —a) + (Y +F)>
X
Y+Fp Y+ R} ’
X +a)P+ (Y +F)? (X —a)+ (Y +F)
(42)

where M}, F¢ and F} are given in Egs. (27a)-(27d).
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Similarly, the solutions of anisotropic multi-layered
media subjected to a uniformly distributed temperature
Ty in the region |x| < b on the bottom surface are ob-
tained as follows:

oo N
TOX,Y)=T» Y M
1=0 k=1
L X-D+b L X-D-b
tan - -
Y+ Ff Y+ Ff
>< b
+tan! +b L X—-D-b
Y Fd Y+de
(43)
g7 (X, Y)
o0 N
=Tk Y > M}
1=0 k=1
X—-D+b B X—-D-b
(X —D+b+ (Y +F) (X—D—b)+ (Y +F)
X—-D+b B X-D-»b ’
(X —=D+b) + (Y +F) (X =D—b) + (Y +F)
(44)
4/ (x,Y)
o0 N
=Tky > M
1=0 k=1
Y+ Ff B Y +F¢
(X —=D+b + (Y +F) (X —D—b) + (Y +F¢)
Y+F! 3 Y+F! '
(X —=D+b)+(Y+F)Y? (X—D—b)+ (Y +F)
(45)

where M?, F¢ and F¢ are given in Egs. (36a)—-(36d).

5. Numerical results

By using the analytical explicit solutions developed in
the previous sections, numerical calculations of tem-
perature and heat flux are obtained for anisotropic
multi-layered media via a computational program. The
full-field analysis for the anisotropic layered medium
consisting of 10 layers subjected to prescribed tempera-
ture on surfaces will be discussed in detail. The thermal
conductivities for each layer are listed in Table 1.

Figs. 2-4 show the full-field distributions of temper-
ature and heat fluxes for prescribed uniformly distrib-
uted temperature Ty on the top surface —h <x <A, the
thickness for each layer is the same and equal to 4. In the
full-field distribution contours, solid lines and dot lines
are used to indicate positive and negative values,
respectively. In anisotropic multi-layered media, the

Table 1
The thermal conductivities for the anisotropic ten-layered
medium

Layer Thermal conductivity (W/m K)
kiy kia ko

1 44.01 11.91 85.28
2 76.56 20.63 52.73
3 30.65 3.37 28.82
4 83.61 18.12 20.84
5 33.67 0 33.67
6 52.73 20.63 76.56
7 28.82 3.37 30.65
8 83.61 18.12 20.84
9 33.67 0 33.67
10 85.28 11.91 44.01

T,

0o b-— ]

Fig. 2. Full-field temperature distribution for prescribed uniformly distributed temperature 7; on the top surface —h <x < h.
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Fig. 4. Full-field heat flux ¢, distribution for prescribed uniformly distributed temperature 7, on the top surface -2 <x<h.

symmetry for the temperature and heat flux fields that is
found in the isotropic material is distorted due to
the material anisotropy. It is shown in the figures that
the temperature and heat flux ¢, are continuous at the
interfaces. This also indicates that the convergence and
accuracy for the numerical calculation are satisfied.
However, the heat flux ¢, is discontinuous at the inter-
faces and the values are small except at the first layer.
Next, the full-field analysis of anisotropic multi-lay-
ered media with different layer thickness for each layer is
considered. The full-field distributions of temperature
and heat flux in the y-direction for prescribed uniformly
distributed temperature 27, at two regions (—22<x<

—h; h<x<2h) on the top surface and constant tem-
perature 7; on the entire bottom surface are shown in
Figs. 5 and 6, respectively. Fig. 7 shows the temperature
field for prescribed constant temperature 27, at
—h <x < h on the top surface and constant temperature
Ty at —2h <x < 2h on the bottom surface.

The use of composite materials in a wide variety of
modern engineering applications has been rapidly
increasing over the past few decades. The increasing use
of composite materials in the automotive and aerospace
industries has motivated research into solution methods
to investigate the thermal properties of these materials.
Numerical calculations for layered composites of 12
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Fig. 5. Full-field temperature distribution for prescribed uniformly distributed temperature 27, at two regions (—2A<x< —h;
h<x<2h) on the top surface and constant temperature 7 on the bottom surface.
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Fig. 6. Full-field heat flux g, distribution for prescribed uniformly distributed temperature 27, at two regions (—2hA<x< —h;
h<x<2h) on the top surface and constant temperature Ty on the bottom surface.

fiber-reinforced layers will be considered. The fiber angle,
0, is measured counterclockwise from the positive x-axis
to the fiber direction. A [0°/30°/60°/90°/120°/150°], lam-
inated composite is considered first. By regarding each
layer as being homogeneous and anistotropic, the gross
thermal conductivities ki, k2, k» = 30.65, 3.37, 28.82

W/mK in the material coordinates of the layer are used.
The gross thermal conductivities in the structured coor-
dinates for a given fiber orientation 0 of the layer can be
determined via the tensor transformation equation. The
numerical result of the temperature distribution for pre-
scribed temperature 27; in a region —2h < x < 2k on the
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Fig. 7. Full-field temperature distribution for prescribed uniformly distributed temperature 27, at —h <x <A on the top surface and
constant temperature Ty at —2h < x < 2k on the bottom surface.

0.02

10 12

Fig. 8. Full-field temperature distribution of a [30°/60°/90°/120°/150°], laminated composite for prescribed uniformly distributed
temperature 27 at —24 <x < 2k on the top surface.

top surface is shown in Fig. 8. Next, a composite layered ) 1 (1 + cos%x) x| < 46
medium with stacking sequence [0°/60°/—60°],s is inves- r |y=0 0 x| > . (46)
tigated and the result is shown in Fig. 9.

Finally, we consider the prescribed surface tempera- Figs. 10 and 11 indicate the full-field distributions of
ture as a function in the form temperature and heat flux in the y-direction for an
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Fig. 9. Full-field temperature distribution of a [0°/60°/—60°],s laminated composite for prescribed uniformly distributed temperature

2Ty at —2h <x < 2h on the top surface.
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Fig. 10. Full-field temperature distribution for prescribed distributed temperature 7y(1 4 cos¥x) at —h <x <’ on the top surface.

anisotropic layered medium consisting of 10 layers. The
thickness for each layer is different and the thermal
conductivities are presented in Table 1.

6. Summary and conclusions

A two-dimensional steady-state thermal conduction
problem of anisotropic multi-layered media is consi-

dered in this study. A linear coordinate transformation
for multi-layered media is introduced to simplify the
governing heat conduction equation without compli-
cating the boundary and interface conditions. The linear
coordinate transformation introduced in this study
substantially reduces the dependence of the solution on
thermal conductivities and the original anisotropic
multi-layered heat conduction problem is reduced to
an equivalent isotropic problem. By using the Fourier
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Fig. 11. Full-field heat flux ¢, distribution for prescribed distributed temperature 7y(1 4 cos}x) at —2<x </ on the top surface.

transform technique and a series expansion, exact ana-
Iytical solutions for the full-field distribution of tem-
perature and heat flux are presented in explicit series
forms. The solutions are easy to handle in numerical
computation. The numerical results for the full-field
distribution for different boundary conditions are pre-
sented and are discussed in detail. Solutions for other
cases of boundary temperature distribution can be
constructed from the basic solution obtained in this
study by superposition. The analytical method provided
in this study can also be extended to solve the aniso-
tropic heat conduction problem in multi-layered media
with embedded heat sources and the results will be given
in a follow-up paper.
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